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Recently, a basis-invariant measure of coherence known as the intrinsic degree of coherence has been established
for classical and single-particle quantum states [J. Opt. Soc. Am. B 36, 2765 (2019)]. In this article, we use the
same mathematical construction to define the intrinsic degree of coherence of two-qubit states and demonstrate
its usefulness in quantifying two-particle quantum correlations and entanglement. In this context, we first show
that the intrinsic degree of coherence of a two-qubit state puts an upper bound on the violations of Bell inequalities
that can be achieved with the state and that a two-qubit state with an intrinsic degree of coherence less than 1/

√
3

cannot violate Bell inequalities. We then show that the quantum discord of a two-qubit state, which quantifies the
amount of quantum correlations available in the two-qubit state for certain tasks, is bounded from above by the
intrinsic degree of coherence of the state. Next, in the context of two-particle entanglement, we show that the range
of values that the concurrence of a two-qubit state can take is decided by the intrinsic degree of coherence of the
two-qubit state together with that of the individual qubits. Finally, for the polarization two-qubit states generated
by the parametric down-conversion of a pump photon, we propose an experimental scheme to measure the intrinsic
degree of coherence of two-qubit states. We also present our theoretical study that shows how the intrinsic degree
of coherence of a pump photon dictates the maximum intrinsic degree of coherence of the generated two-qubit
state. ©2020Optical Society of America

https://doi.org/10.1364/JOSAB.384936

1. INTRODUCTION

The quantification of coherence, which is the essential ingredi-
ent that drives many classical [1,2] and quantum technologies
[3–6], has been the subject of intense research investigations
in the last several decades [7–10]. In the context of a partially
polarized field represented by a 2× 2 polarization matrix ρ,
coherence of the state is quantified in a basis-invariant man-
ner using the so-called degree of polarization P2, defined
as P2 =

√
2Tr(ρ2)− 1 [7]. Since the trace of a matrix is

basis-independent, P2 remains invariant under unitary transfor-
mations. Although P2 was intended to quantify the coherence
of a two-dimensional (2D) polarization matrix, it can be used as
a basis-independent quantifier of coherence for any 2D classical
or quantum state, such as a two-level atomic states or a spin-1/2
particle states. This basis-independent way to define coherence
that, in the context of 2D polarization states, yields the degree

of polarization, has been extended not only to N-dimensional
states [11–13] but also to infinite-dimensional states [13]. Such
a quantifier is now being referred to as the intrinsic degree of
coherence [13].

In the context of entangled two-particle systems, it is known
that the system possesses two-particle coherence in addition to
one-particle coherences possessed by the individual subsystems.
This two-particle coherence is responsible for two-particle inter-
ference produced by such systems [14]. Some very important
examples of two-particle interference include the Hong–Ou–
Mandel effect [15], the Franson interferometer [16], frustrated
two-photon creation [17], induced coherence without induced
emission [18], and violations of Bell inequality [19,20]. Among
the states that produce two-photon interference, the two-qubit
states have been studied the most. A two-qubit state consists of
two subsystems, each of which exists in a 2D Hilbert space. Our
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first aim in this article is to quantify the two-particle coherence
of two-qubit states in a basis-independent manner. We do so by
defining the intrinsic degree of coherence of two-qubit states
using the same mathematical construction [11–13] that has
been used to define the intrinsic degree of coherence of classical
and one-particle quantum states.

The two-qubit states are not only the necessary ingredients of
many quantum information-based applications [21–23], but
also are used to demonstrate violations of Bell inequalities and
thereby to rule out any potential hidden variable interpretation
of quantum mechanics [19,20]. In the last several years, much
effort has gone into quantifying the entanglement of two-qubit
states. Among the available entanglement quantifiers, Wootters’
concurrence [24] is the most widely used. More recently, there
also has been an interest in quantifying quantum correlations of
two-qubit states. Such correlations are not captured completely
by an entanglement measure. One such quantifier is discord,
which quantifies the amount of quantum correlations available
in the state for certain tasks. As our next aim in this article, we
establish important connections between the intrinsic degree
of coherence of a two-qubit state and several of the above-
mentioned measures of two-qubit quantum correlation and
quantum entanglement. In this way, we demonstrate the useful-
ness of the intrinsic degree of coherence of two-qubit states to
quantify two-particle correlations and entanglement. Finally,
for the polarization two-qubit states generated by parametric
down-conversion of a pump photon, we propose an experimen-
tal scheme to measure the intrinsic degree of coherence of the
two-qubit state. We also present our theoretical study that shows
how the intrinsic degree of coherence of a pump photon dictates
the maximum intrinsic degree of coherence of the generated
two-qubit state.

This article has seven sections. In Section 2, we define the
intrinsic degree of coherence of a two-qubit state. In Section 3,
we establish how it is connected with various measures of quan-
tum correlation, namely, the degree of Bell violation and the
discord. In Section 4, we discuss how it is related to the con-
currence. In the context of the polarization two-qubit states
produced by the parametric down-conversion of a pump pho-
ton, we propose an experimental scheme to measure the intrinsic
degree of coherence of two-qubit states in Section 5, and we dis-
cuss how the intrinsic degree of coherence of the pump photon
affects the intrinsic degree of coherence of the down-converted
two-qubit state in Section 6. Finally, we summarize our results
in Section 7.

2. DEFINING THE INTRINSIC DEGREE OF
COHERENCE OF TWO-QUBIT STATE

Let us consider a general two-particle system consisting of two
subsystems, A and B , with the Hilbert space dimension of each
subsystem equal to 2. Let us represent this two-qubit state by
a 4× 4 density matrix ρ. We assume the two-qubit state ρ to
be normalized, that is, Tr(ρ)= 1. Following the mathematical
construction used in [13], we define the intrinsic degree of
coherence P2⊗2 of the two-qubit stateρ to be

P2⊗2 =

√
4Tr(ρ2)− 1

3
. (1)

The intrinsic degree of coherence of subsystem A can be writ-
ten as [12,13,25]

P A
2 =

√
2Tr(ρ2

A)− 1, (2)

where ρA =TrB (ρ) is the reduced density matrix of subsys-
tem A and TrB represents the partial trace over subsystem B .
Similarly, one can write the intrinsic degree of coherence of
subsystem B by taking the partial trace over subsystem A. Here,
we have used the following convention to denote the intrinsic
degree of coherences. For a one-particle system, we simply write
the dimensionality of the system as the subscript. For a two-
particle system, the subscript consists of two numbers separated
by a⊗ sign, with the numbers being equal to the dimensionali-
ties of the individual subsystems. We note that P2⊗2 is invariant
under global unitary transformation and ranges from 0 to 1, that
is, 0≤ P2⊗2 ≤ 1. P2⊗2 is unity for a pure two-qubit state and
is zero for a completely mixed two-qubit state. We further note
that just as P2 is called the degree of polarization in the context
of single-particle polarization states, P2⊗2 can analogously
be referred to as the degree of two-photon polarization in the
context of polarization two-qubit states. In general, P A

2 6= P B
2 ;

however, whenρ is a pure two-qubit state, P A
2 = P B

2 .

3. QUANTUM CORRELATION MEASURES AND
INTRINSIC DEGREE OF COHERENCE

A. Nonlocal Correlation and Intrinsic Degree of
Coherence

Nonlocality is an intriguing feature of quantum-entangled
systems and has been established by the experimental demon-
strations of the violations of Bell inequalities [26,27]. The
CHSH form of Bell’s inequality involves the construction of
a Bell parameter S [27]. If, for a given state ρ, there exists a
measurement setting for which S > 2 then the Bell’s inequality
is said to be violated and the state ρ is said to be quantum-
entangled in the sense that a local hidden variable description of
correlations exhibited by the state becomes impossible [28].

We now ask the following question: How is the intrinsic
degree of coherence P2⊗2 of a two-qubit state ρ related to the
maximum Bell violation realizable with the state? To answer this
question, first we note that for a given state ρ the Bell parameter
can be written in terms of the participation ratio R = 1/Tr(ρ2)

as [29]

S ≤
√

8/R for R ∈ [1, 2], (3)

S ≤ 2
√

4/R − 1 for R ∈ [2, 4]. (4)

Using the definition given in Eq. (1), we write the above
inequalities as

S ≤
√

6P 2
2⊗2 + 2 for P2⊗2 ∈

[
1
√

3
, 1

]
, (5)

S ≤ 2
√

3P2⊗2 for P2⊗2 ∈

[
0,

1
√

3

]
. (6)

We note that only the pure two-qubit states with P2⊗2 = 1
can exhibit maximum Bell violation with S = 2

√
2 and that
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any state having P2⊗2 ≤ 1/
√

3 cannot violate Bell’s inequality.
Thus, we find that the intrinsic degree of coherence of a two-
qubit state puts an upper bound on the maximum Bell violation
achievable with the state over all possible measurement settings.

B. Quantum Discord and Intrinsic Degree of
Coherence of Two-Qubit States

Quantum discord is a measure of quantum correlation [30].
The evaluation of quantum discord for an arbitrary two-qubit
state is a challenging task since it requires optimization of the
conditional entropy between the two subsystems [30]. Closed-
form analytic expressions for discord are known only for certain
classes of states [31–33]. The difficulty in calculating quantum
discord led to the introduction of the geometric discord DG

[34], which for a state ρ is defined as the minimum distance
between the given state and the set of zero discord states, that is,√

DG =minχ∈�||ρ − χ ||, (7)

where ||X || =
√

Tr(X † X ) is the Frobenius norm. Here,� is the
set of zero discord states. The elements of� are density matrices
of the form [35]

χ =
∑

i

pi |i〉〈i | ⊗ ρBi, (8)

where {pi } are the probabilities, {ρBi} is the set of all possible
states from subsystem B , and {|i〉} is an orthonormal set of basis
vectors corresponding to subsystem A.

We now show that the intrinsic degree of coherence of a
two-qubit state decides the upper bound for quantum discord
of the state. To this end, using the triangle inequality, we write
Eq. (7) as √

DG =minχ∈�

∣∣∣∣∣∣∣∣ρ − I
4
+

I
4
− χ

∣∣∣∣∣∣∣∣ ,
≤

∣∣∣∣∣∣∣∣ρ − I
4

∣∣∣∣∣∣∣∣+minχ∈�

∣∣∣∣∣∣∣∣ I
4
− χ

∣∣∣∣∣∣∣∣ . (9)

Since the geometric discord of state I/4 is zero, we write
Eq. (9) as √

DG ≤

∣∣∣∣∣∣∣∣ρ − I
4

∣∣∣∣∣∣∣∣ . (10)

One of the interpretations of P2⊗2 is that it is the Frobenius
distance between ρ and the maximally incoherent state I/4,

that is, P2⊗2 =

√
4
3 ||ρ −

I
4 || [12,13]. Using this result, we write

the above inequality as

√
DG ≤

√
3

4
P2⊗2. (11)

Furthermore, it is known that D≤
√

2DG [36]. Therefore,
we write Eq. (11) as

D≤

√
3

2
P2⊗2. (12)

Thus, we find that the quantum correlations present in a
two-qubit state as quantified by discord follow an upper bound

Fig. 1. Scatter plot of quantum discord D and P2⊗2 of X -states. We
have taken a 2 ×107 number of randomly chosen X -states. The con-
tinuous line represents D= P2⊗2, and the dashed line represents D=
√

3/2P2⊗2.

decided by P2⊗2 of the two-qubit state. We note that mixed
states with P2⊗2 <

√
2/3 cannot have unit quantum discord

and that states with P2⊗2 = 0 (that is, the maximally incoherent
states) cannot have nonzero quantum discord. Because of the
unavailability of an analytic expression of quantum discord for
a generic two-qubit state, it is very difficult to verify whether or
not the bound given by the inequality in Eq. (12) is saturable.
Nevertheless, since P2⊗2 can be calculated for any given two-
qubit state, Eq. (12) provides an upper bound on discord even in
a situation in which computing it is nontrivial.

Next, we consider X -states for which the analytic expression
of quantum discord in a given computational basis is known
[32,33,37]. The general form of the X -state is

ρ =

ρ11 0 0 ρ14

0 ρ22 ρ23 0
0 ρ32 ρ33 0
ρ41 0 0 ρ44

 , (13)

where ρ11 + ρ22 + ρ33 + ρ44 = 1 and ρij = ρ
∗
ji with

i, j = 1, 2, 3, 4. Quantum discord for the X -state is [37]

D=min(Q1, Q2), (14)

where Q1 =
∑4

i=1 λi log2λi + H(ρ11 + ρ33)+ H(τ ) and
Q2 =

∑4
i=1 λi log2λi +

∑
i ρiilog2(ρii). Here λi ’s are the

eigenvalues of X -states, H(x )=−x log2x − (1− x )log2(1−

x ) and τ = 1
2 (1+

√
[1− 2(ρ33 + ρ44)2 + 4(|ρ14| + |ρ23|)

2).
The intrinsic degree of coherence of the X− state can be shown
to be

P2⊗2 =

√
4

3

(
ρ2

11 + ρ
2
22 + ρ

2
33 + ρ

2
44

+ 2(|ρ14|
2
+ |ρ23|

2)−
1

4

)1/2

. (15)

Using Eqs. (14) and (15), we generate a scatter plot with
a set of 2× 107 randomly chosen X -states (see Fig. 1). The
continuous line represents D= P2⊗2, and the dashed line is
D=
√

3/2P2⊗2, which is the upper bound on discord for a
given P2⊗2. From the scatter plot, we find that the X -states
follow a tighter upper bound, given by D≤ P2⊗2. Furthermore,
it can be seen that this tighter bound for X -states is saturable,
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that is, D= P2⊗2, at least for P2⊗2 = 0, 1/3 and 1. For exam-
ple, the state ρ1 = |ψ

±
〉〈ψ±|, where |ψ±〉 = 1

√
2
(|01〉 ± |10〉)

saturates the bound with D= P2⊗2 = 1, while the states
ρ2 =

1
3 [|00〉〈00| + |ψ±〉〈ψ±| + |11〉〈11|] and ρ3 =

1
3 [|00〉〈00| + |φ±〉〈φ±| + |11〉〈11|] yield D= P2⊗2 = 1/3.

4. CONCURRENCE AND INTRINSIC DEGREE OF
COHERENCE OF TWO-QUBIT STATE

Concurrence is the most widely used measure of quantum
entanglement [24]. For a two-qubit state ρ, concurrence is
given by C(ρ)=max(0, λ1 − λ2 − λ3 − λ4), where λ’s are in
descending order and are the square roots of the eigenvalues of
matrixρ(σy ⊗ σy )ρ

∗(σy ⊗ σy ), withσy being the Pauli matrix.
A nonzero value of concurrence implies nonzero entanglement
of the two-qubit state. It has been shown that concurrence of a
two-qubit state satisfies the following inequality [38],

C(ρ)≤
√

2[1−Tr(ρ2
A)], (16)

where ρA =TrB (ρ) is the reduced density matrix of subsystem
A. The equality holds if and only if the state ρ is pure. Using
Eq. (2), we write the above inequality as

C(ρ)≤
√

1− (P A
2 )

2
, (17)

where P A
2 is the intrinsic degree of coherence of subsys-

tem A. Similarly, one can express C(ρ) in terms of P B
2 as

C(ρ)≤
√

1− (P B
2 )

2
. Using this and the above inequality,

we obtain

[C(ρ)]2 ≤ 1−
(P A

2 )
2
+ (P B

2 )
2

2
. (18)

The above inequality reflects a well-known fact that for a
maximally entangled two-qubit state, that is, for C(ρ)= 1, the
individual qubits are completely mixed, that is, P A

2 = P B
2 = 0.

Now, it is known that concurrence C(ρ) satisfies the following
inequality [38],

[C(ρ)]2 ≥ 2[Tr(ρ2)−Tr(ρ2
A)]. (19)

Thus, using Eqs. (1) and (2), we write the above inequality as

[C(ρ)]2 ≥
3

2
P 2

2⊗2 −
1

2
− (P A

2 )
2. (20)

We find that the intrinsic degree of coherence of the two-
qubit state combined with that of the individual qubits
determine the range of values that the concurrence of the
two-qubit state can take. Although a closed-form analytic
expression for concurrence of a general two-qubit state is avail-
able, the motivation behind the derivation of the above bound
is to understand how the entanglement of a two-qubit state gets
dictated by the intrinsic degree of coherence of the two-particle
system and that of the individual subsystems. We note that for
Bell states the above inequality gets saturated and becomes the
inequality given in Eq. (17). We further note that the inequality
given in Eq. (20) provides an entanglement criterion, which says
that if a two-qubit state ρ satisfies 3P 2

2⊗2 − 1> 2(P A
2 )

2 then it
must be entangled.

5. MEASURING THE INTRINSIC DEGREE OF
COHERENCE OF TWO-QUBIT STATES

In this section, we propose an experimental scheme to measure
the intrinsic degree of coherence P2⊗2 of a generic polarization
two-qubit state produced by using the nonlinear optical proc-
ess of parametric down-conversion (PDC). In PDC, a pump
photon splits into two entangled photons called the signal and
idler photons [39]. The schematic of the experimental scheme is
depicted in Fig. 2. In this figure, the PDC-based two-qubit state
generator produces an arbitrary two-qubit state in the polari-
zation basis. Such two-qubit state generators can be realized
by involving multiple PDC crystals. One such example is the
two-qubit state generator proposed in [40] that uses four PDC
crystals. In Fig. 2, the signal (idler) photon passes through the
phase retarder PRs (PRi ) and the rotation plate RPs (RPi ) and is
detected by the detector DS(Di ). The rotation plate RPs (RPi )

rotates the polarization of the signal (idler) photon by angle
θs (θi ) while the phase retarder PRs (PRi ) introduces a phase
difference δs (δi ) between the horizontal and vertical polari-
zation components of the signal (idler) field. We note that the
phase retarders and rotation plates can be realized using ordinary
waveplates [41]. We now consider the most general two-qubit
stateρ and write it as [42]

ρ =
1

4

I +
√

6
15∑
j=1

r j3 j

 . (21)

Here r j ’s are the analogs of Stokes parameters and 3 j ’s are
the 4× 4 generalized Gell-Mann matrices, which are the gener-
ators of the group SU(4) [43]. Using Eq. (1), we write the degree
of coherence P2⊗2 in terms of the Stokes parameters r j as [13]

P2⊗2 =

√√√√ 15∑
j=1

|r j |
2. (22)

Thus, we have that P2⊗2 can be measured experimentally
by measuring the Stokes parameters. We now outline how
this measurement could be performed. The state of the two
qubits just before the detectors is given by ρ̃ =UρU †, where
U = (U θ

s U δ
s )⊗ (U

θ
i U δ

i )with

U θ
k =

(
cos θk sin θk

− sin θk cos θk

)
, U δ

k =

(
1 0
0 e iδk

)
, (23)

and k = s , i . The signal and idler photons are detected in coinci-
dence at Ds and Di in the horizontal polarization directions.

Fig. 2. Schematic of the proposed experimental setup to measure
the intrinsic degree of coherence of a two-qubit state. PRs and PRi are
phase retarders; RPs and RPi are rotation plates; and Ds and Di are
photon detectors in a coincidence-counting setup.
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Therefore, the coincidence detection probability M can be
written as M = 〈H H|UρU †

|H H〉, evaluating which, we get

M = cos θs cos θi
[
cos θs (ρ11 cos θi + ρ21e−iδi sin θi )

+ sin θs (ρ31e−iδs cos θi + ρ41e−(δs+δi ) sin θi )
]

+ e iδi cos θs sin θi
[
cos θs (ρ12 cos θi + ρ22e−iδi sin θi )

+ sin θs (ρ32e−iδs cos θi + ρ42e−(δs+δi ) sin θi )
]

+ e iδs sin θs cos θi
[
cos θs (ρ13 cos θi + ρ23e−iδi sin θi )

+ sin θs (ρ33e−iδs cos θi + ρ43e−(δs+δi ) sin θi )
]

+ e i(δs+δi ) sin θs sin θi
[
cos θs (ρ14 cos θi

+ ρ24e−iδi sin θi )+ sin θs (ρ34e−iδs cos θi

+ ρ44e−(δs+δi ) sin θi )
]

.
(24)

We find that by measuring M at various parameter settings θs ,
θi , δs , and δi , one can calculate the Stokes parameters. Table 1
shows a convenient set of 16 measurement settings of these
parameters. In the table, we have denoted the coincidence
probabilities by Mi , with i = 1, 2, · · · 16 being the mea-
surement index. Using Eqs. (21) through (24), one can show
that the Stokes parameters are related to the 16 coincidence
probabilities as

r1 =
−1

2
(M1 +M2 − 2M5), (25a)

r2 =
−1

2
(M1 +M3 − 2M9), (25b)

r3 =
1

2
[M12 −M11 +M10 −M9 +M8

−M7 +M6 −M5 + 2(M13 −M16)], (25c)

r4 =
1

2

2(M13 +M16)−

 12∑
j=5

M j −

4∑
j=1

M j

 , (25d)

r5 =
−1

2
(M2 +M4 − 2M11), (25e)

r6 =
−1

2
(M3 +M4 − 2M7), (25f)

r7 =
1

2
(M1 +M2 − 2M6), (25g)

r8 =
1

2
(M1 +M3 − 2M10), (25h)

r9 =
−1

2

2(M14 +M15)−

 12∑
j=5

M j −

4∑
j=1

M j

 ,
(25i)

Table 1. Coincidence Probabilities Mi, with
i= 1, 2, · · · 16, at 16 Different Settings of the
Parameters θs, θi, δs, and δi

θs θi δs δi M (Coincidence Counts)

0 0 0 0 M1

0 π/2 0 0 M2

π/2 0 0 0 M3

π/2 π/2 0 0 M4

0 π/4 0 0 M5

0 π/4 0 π/2 M6

π/2 π/4 0 0 M7

π/2 π/4 0 π/2 M8

π/4 0 0 0 M9

π/4 0 π/2 0 M10

π/4 π/2 0 0 M11

π/4 π/2 π/2 0 M12

π/4 π/4 0 0 M13

π/4 π/4 π/2 0 M14

π/4 π/4 0 π/2 M15

π/4 π/4 π/2 π/2 M16

r10 =
−1

2
[−M12 +M11 −M10 +M9 +M8

−M7 +M6 −M5 + 2(M14 −M15)], (25j)

r11 =
1

2
(M2 +M4 − 2M12), (25k)

r12 =
1

2
(M3 +M4 − 2M8), (25l)

r13 =
1

2
(M1 −M2), (25m)

r14 =
1

2
√

3
(M1 +M2 − 2M3), (25n)

r15 =
1

2
√

6
(M1 +M2 +M3 − 3M4). (25o)

Therefore, to measure P2⊗2, one needs to first measure M1

through M16 experimentally, then evaluate the Stokes param-
eters using the above equation, and finally substitute these
Stokes parameters in Eq. (22). We note that while the above state
reconstruction procedure is sufficient in principle, additional
post-processing may be required for a reliable reconstruction in
the presence of experimental noise [44].

6. TRANSFER OF INTRINSIC DEGREE OF
COHERENCE IN PDC

In recent years, the transfer of the coherence properties of the
pump photon to the signal and idler photons has been stud-
ied in various different contexts [40,45,46]. In this section,
we investigate this transfer in terms of the intrinsic degree of
coherence. For conceptual clarity, we restrict our analysis to
polarization two-qubit states. We take the pump field to be
partially polarized and represent it by a 2× 2 density matrix
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ρpump in the polarization basis. We represent the generated
two-qubit state by a 4× 4 density matrix ρsi. The eigenval-
ues of ρpump are denoted by ε1 and ε2 and those of ρsi are
denoted by λ1, λ2, λ3, and λ4. It can be easily shown that ε1 =

(1+ P pump
2 )/2, ε2 = (1− P pump

2 )/2 [7,40], where P pump
2

is the intrinsic degree of coherence of the pump field and is

given by P pump
2 =

√
2Tr(ρ2

pump)− 1=
√

2(ε2
1 + ε

2
2)− 1. The

intrinsic degree of coherence of the generated two-qubit stateρsi

is given by P si
2⊗2 =

√
[4Tr(ρ2

si)− 1]/3=
√
(4
∑

i λ
2
i − 1)/3.

We assume that the two-photon state generation process is
trace-preserving and entropy nondecreasing. Under these
assumptions, it can be shown, based on majorization [40,47],
that λ2

1 + λ
2
2 + λ

2
3 + λ

2
4 ≤ ε

2
1 + ε

2
2 . Using this majorization

relation, we obtain

P si
2⊗2 ≤

√
1+ 2(P pump

2 )2

3
. (26)

The equality holds in situations in which the two-qubit state
generation process is unitary. The two-qubit generation process
becomes nonunitary in the presence of scattering or decohering
channels. Thus, we find that the intrinsic degree of coherence of
the pump field puts an upper bound on the intrinsic degree of
coherence of the down-converted two-qubit state. For unitary
generation processes, P pump

2 fixes the value of P si
2⊗2 through

the relation P si
2⊗2 =

√
1+2(P

pump
2 )2

3 . The intrinsic degree of
coherence of the two-qubit state P si

2⊗2 becomes unity when the
two-qubit generation process is unitary and when the pump is
completely polarized, that is, P pump

2 = 1.

7. SUMMARY

In this article, we have defined the intrinsic degree of coher-
ence of two-qubit states and have demonstrated its usefulness
to quantify the quantum correlations and entanglement of a
two-particle system. We have shown that the intrinsic degree
of coherence of a two-qubit state puts an upper bound not only
on the violations of Bell inequalities but also on quantum dis-
cord. Furthermore, the range of values that the concurrence of a
two-qubit state can take is shown to be decided by the intrinsic
degree of coherence of the two-qubit state together with that
of the individual qubits. Finally, in the context of PDC, we
have proposed an experimental scheme to measure the intrinsic
degree of coherence of two-qubit states and have studied how it
depends on the intrinsic degree of the coherence of the pump.
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